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The Monte Carlo method is used to compute the reflection and transmission coef- 
ficients of a herringbone cavity on the basis of a homogeneous specular-diffuse 
model of surface reflection. 

Cavities of different shape are used extensively in apparatus where radiation heat trans- 
fer predominates. For instance, lattice cooling radiation screens are used in cryogenic 
vacuum chambers [1]. An individual cell of the screen formed by two adjacent ribbed tubes of 
herringbone type~ for instance, is a cavity whose radiation characteristics (radiant energy 
reflection and transmission characteristics) govern the efficiency of the screen to a signif- 
icant extent. 

The traditional approach to analyzing the radiation characteristics of a cavity is based 
on using an ideal diffuse model of reflection, and its corresponding experimental values of 
the hemispherical reflection coefficients of surfaces forming the cavity. Investigations 
executed [2-5] to estimate the influence of the directional properties of surface reflection 
on radiation heat transfer in different systems indicate a complex interaction between the 
surface reflection model taken and the accuracy of the analysis performed. Mostly this inter- 
action is determined by the specific conditions of the problem, however, the following can 
be extracted from the general situations: taking account of the directional properties of 
surface reflection raises the accuracy of the analysis in those cases when the radiant flux 
reflected from these surfaces is governing for the system domain under investigation. This 
is especially manifest in the exposure of a system to an external collimated flux [3,5]. 

In this paper, the total radiant flux emerging from a cavity through the entrance and 
exit surfaces, referred to the external flux, i.e., hemispherical integrals with respect to 
the spectrum of the cavity reflection and transmission coefficients averaged over the surface, 
is the result of considering the radiant heat transfer in a herringbone cavity. The cavity 
can be exposed to both diffuse and collimated external radiant flux, where the natural radia- 
tion of the surface and the external radiation from the back side are negligibly small in 
comparison. A homogeneous specularly diffuse model of reflection [6] is used in the re- 
search, according to which the hemispherical reflection coefficient can be represented as the 
sum of the specular and diffuse components 

R =Re+R~.  ( l )  
The magnitude of the components is independent of the angle of incidence of the irradiating 
flux, and the direction of R s corresponds exactly to specular reflection. The degree of 
specularity of the surface reflection will be characterized by the parameter Ps = Rs/R. The 
range of Ps from 0 to 0.5 is considered in the present paper. 

The Monte Carlo method is used to solve the formulated problem. The basic principles 
and practical methods of modeling the radiation heat transfer process have been worked out 
well enough [7-9]~ Only certain peculiarities of the analyses of the reflection and trans- 
mission coefficients of an individual cell of the screen are reflected briefly below. Let 
each batch (particle) inserted in the cavity possess unit energy. (therefore, for the 
total number of particles being followed in the cell N, an energy equal to N units is intro- 
duced.) In each collision with some surface of the cavity the particle loses a fraction of 
the energy proportional to the absorption coefficient of this surface, and is reflected with 
the remaining energy. The direction of particle reflection is determined taking the relation- 
ship (I) into account, i.e., the probability of specular reflection equals the degree of spec- 
ularity of the reflection Ps. If the particle is reflected in conformity with a diffuse law 
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Fig. ]. Herringbone cavity (computational diagram). 

(the probability density of reflection at an angle q to the normal is P(q) = cos n), then 
the connection of the random variable q with the random variable M n distributed uniformly in 
the interval (0, I) is accomplished by means of the cumulative function 

n 
M ~ =  SV(n) d~ = Seosndn  =s in  n, (2)  

ar~in M~. (3) 

The particles are tracked until they emerge from the cell of the screen through the 
entrance or exit surfaces. Let a particle undergo z collisions prior to emergence from the 
cavity, it will leave the surface with the energy 

W= R~R2 . . .  Rz,  (4) 

where the subscripts I, 2, ..., z indicate the value of the reflection coefficient of those 
surfaces with which the I, 2, ..., z-th collisions, respectively, occurred. Therefore, the 
reflection and transmission coefficients equal 

Nsn N~ x 

IE 'E = w , ,  = - f f  w,. (5) 
i=1  / = 1  

The ment ioned " e n e r g y "  approach a f f o r d s  good p o s s i b i l i t i e s  when a l l  the  c a v i t y  s u r f a c e s  
pos ses s  i d e n t i c a l  r e f l e c t i v i t y .  In  t h i s  c a s e ,  i t  i s  s u f f i c i e n t  to  compute the number of  p a r -  
t i c l e s  emerging from the  c a v i t y  through the  e n t r a n c e  and e x i t  s u r f a c e s  as a f u n c t i o n  of  the  
number of  c o l l i s i o n s  by the  Monte Car lo  method,  and the  r a d i a t i o n  c h a r a c t e r i s t i c s  of  the  
cavity are easily determined for any value of R by the dependences 

1 ~ RzNenz ' g = ~  
z=O 

I 
~1)" R z N~x z'  =-ff 

(6) 

(7)  

z=0 

where n is the number of collisions to be taken into account. 

Let us consider the radiation characteristics of a cavity as a function of the system 
optical-geometric parameters (Fig. I). For all the versions examined: | = 55~ LI/H = 1.6; 
L2/H = 1.3. 

Reflection Coefficient of a Herringbone Cavity 

It can be assumed that the reflection coefficient of a cavity under collimated exposure 
depends strongly on the magnitude and direction of the specular component of the first 
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TABLE ]. Ranges of External Radiant Flux Entrance Angles in 
a Herringbone Cavity 
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Fig. 2. Absolute and rela- 
tive reflection coefficients 
of a cavity exposed to a 
collimated flux. R = 0.i; 

I) Ps = 0, y = 5~ 2) 0 and 
15~ 3) 0.5 and 5~ 4) 0.5 
and 15 ~ . 

reflection R~), on the (leading) edges nearest to the entrance surface. Three ranges of 
entrance angles exist (let ~ < 0 to the right of the normal to the entrance surface in Fig~ 
l): 

I. ~i ~ ~ < 90~ R~ :) emerges completely from the cavity through the entrance surface; 

2. --90 ~ < 6 ~ 62, R~ I)- is incident on the other inner surfaces, i.e., does not emerge 
from the cavity; 

3. 62 < ~ < ~i, R~) emerges partially from the cavity through the entrance surface. 

The limit values of the ranges correspond to the following conditions: ~ = V, the ex- 
ternal flux is incident along the normal to the cavity edge; 62 = 2P -- 90 ~ , the direction of 
R~ I) is parallel to the cavity entrance surface where ~ = | + y (Fig. I). 

The presence of the specular component within the first range evidently magnifies the 
cavity reflection coefficient as compared with completely diffuse surface reflection. Let us 
note that this and the transition ranges diminish as P increases and become zero for P = 90 ~ 
(Table l). Most extensive is the second range, where as the slope of the edge increases, the 
edge grows and encloses all possible entrance angles for ~ = 90 ~ . For a cavity exposed with- 
in the limits of this range of angles, we note the following: 

An increase in the fraction of specular reflection for invariant R will cause a signifi- 
cant decrease in the cavity reflection coefficient by approximately a linear law, where the 
influence is stronger for smaller values of R (Fig. 2). 

Depending on the entrance angle 6 (for constant R and Ps for all surfaces), the abso§ 
lute values of the coefficient ~ can be highly varied, but the relative decrease of the 
cavity reflection coefficient, induced by the specular component, is practically identical 
for the entire width of the interval; this holds for various angles of the rotation of the 
profiles forming the herringbone cavity (Fig. 2). 

In the case of diffuse exposure of the cavity, the external flux can be represented pro- 
visionally as a combination of individual collimated fluxes whose relative intensity is sub- 
ject to the Lambert law. Therefore, the reflection coefficient of the cavity in the presence 
of a specular reflection component depends on the angular distribution of the external flux 
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Fig. 3. Dependence of the cavity radiation characteristics on the 
angle of profile rotation under diffuse exposure: a) Ps = O, R = 
0.I; b and c) Ps = 0.5. 

in the ranges noted above. The predominant fraction of the energy in the whole range of real 
values of the angle P is introduced into the cavity (Table I) at angles within the range II. 
Therefore, on the whole the cavity reflection coefficient diminishes with the increase in 
the degree of specularity of the surface reflection. (By analogy with the collimated expo- 
sure, this effect is magnified with the diminution in R.) Rotation of the profiles (growth 
of ~ because of y for ~ = const) results in an increase in the'fraction of the external flux 
arriving in the second range, and correspondingly, in a stronger diminution in the cavity 
reflectivity for the identical values of 0s (Fig. 3). For larger values of R, this effect 
is attenuated because of the increase in the compensating role of the flux re-reflected from 
the outer edges of the cell. 

Transmission Coefficient of a Herringbone Cavity 

The results of computations in the case of cavity exposure to collimated radiant flux, 
represented in Fig. 4, show that depending on the entrance angle of the external flux, the 
transmission coefficient ~ can be increased (~* > 1) or decreased (~* < 1) in the presence 
of a specular component of surface reflection. In conformity with the physical model of the 
Monte Carlo method, this can evidently be explained by particle redistribution according to 
the number of reflections needed passing through the cavity. If the increase in the 0s of 
the surfaces results in an increase in the number of particles with small numbers of reflec- 
tions (for optically opaque cavities, principally particles with one reflection), then the 
quantity ~ hence increases. The three surfaces forming the left side of the herringbone 
cavity contour afford the external flux particles the opportunity to slip through the cavity 
with one reflection from one of these surfaces (a--a in Fig. I). In this case (in the neigh, 
borhood of ~ = ~ -- 90 ~ the presence of the specular reflection component increases the 
cavity transmission coefficient sharply (Fig. 4). 
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Fig. 4. Absolute and relative transmission coefficients of 
the cavity exposed to a collimated flux, R = 0. I. Notation 
the same as in Fig. 2. 
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There exists still another range of external flux entrance angles (in the neighborhood 
of ~ = +20 ~ in Fig. 4), where the specular component also influences the quantity ~ strongly. 
In this case the number of particles having two reflections from opposite edges (b--b in Fig. 
1) increases. However, this range is less essential for cavities with highly absorbing walls 
because of the quite low absolute values of the transmission coefficient ~. 

The increase in the Ps of the surface under diffuse exposure of a herringbone 
cavity results in a growth of the cavity transmission coefficient. For instance, the pres- 
ence of a specular reflection component Ps=0.5 increases ~ approximately twofold for practically 
all y as compared with ideal diffuse surface reflection (Fig. 3). Taking account of the 
angular distribution of the external diffuse flux, the growth of the coefficient ~ in the 
ranges noted above apparently considerably exceeds its diminution for all other entrance 
angles. 

Herringbone cavities with highly absorbing walls are considered in the paper. If the 
wall coverings possess definite diffuse-specular reflection properties, then this must quite 
definitely be taken into account in computing the cavity radiation characteristics. This 
latter is valid upon exposure of the herringbone cavity to both collimated and isotropic 
(diffuse) radiant flux. 

NOTATION 

~, ~, hemispherical integral coefficients of radiant energy reflection and transmission 
of a herringbone cavity; R, hemispherical integral coefficient of surface reflection; p, 
ratio of the appropriate reflection component to the total surface reflection; 6, angle be- 
tween the direction of ray (particle) entrance into the cavity and the normal to the entrance 
surface of the cavity; M, random variable distributed uniformly in the range (0,|); P(~), 
probability density of reflection from a surface at the angle D to the normal. Subscripts: 
s, specular reflection; d, diffuse reflection; en, ex, entrance and exit openings of the 
herringbone cavity surface; i, j, particles leaving the cavity through the entrance and exit 
surfaces; z, number of particle collisions with walls prior to emergence from the cavity; 
asterisk (*) is the ratio between the value for specular-diffuse surface reflection and the 
value for ideal diffuse reflection for identical R. 
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